
P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 22 of 39 Based on the original work by Brian Ward

The Technical Bit
Selection is the third important programming construct, along with Sequence and Iteration

There is often a need to make choices in a program, so that the program will perform some
actions(once) if a certain condition is true.
This is programmed using the instruction. Example:

In this example, when the program reaches this section of code, it will perform the block of
instructions inside the braces { } only if the condition (count less than 10) is true.
Otherwise it will just carry on with the rest of the program.

This time the block of instructions inside the first braces { } is done only if the condition
(count less than 10) is true. If the condition is false, the else set of instructions is done.

Week 3

Selection

if (count < 10) // if count less than 10
{

// ---- put instructions here to be done once if the condition is true
}

if (count < 10) // if count less than 10
{

 // ---- put instructions here to be done once if the condition is true
}
else
{

 // ---- put alternative instructions here to be done once if the condition is false
}

1

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 23 of 39 Ceebot Directed Study

Ceebot Task 9.1: Spare Me!
Here we have a shooting exercise with 6 targets to destroy. The targets are 5 metres apart

Your task:
Use a for loop to destroy the targets, but avoid the third position by using an
instruction.

Normally, the robot will move forward, turn, fire, and then turn back.
This would be repeated 6
times.
But now we should only do this
if we are not at the third
position.

A suitable algorithm for the program
is shown here:

Extra
Devise another method of tackling the
same exercise. Press [F1] for a
second algorithm.

Ceebot Task 9.2: Spare Two
Oh dear, this time there are 2 positions to be avoided .. positions 2 and 5 have

Your task:
Use a for loop to destroy the targets, but avoid the second and fifth positions, using ONE

instruction.

Because there are now two conditions to use in the if statement we can combine
them using the && operator (AND) .. see below.
You could also use the || operator (OR)
Design a new algorithm for your program and get it to work

Examples using && and || operators
if (count > 0 && count <=10)
{

// do something if both conditions are true (count > 0 and count <=10)
}

if (count == 1 || count == 8)
{

// do something if either condition is true (count == 1 OR count == 8)
}

Algorithm
1. Loop 6 times

 a. move forwards 5 metres.
 b. if we are NOT at position 3

i. turn left 90 degrees.
ii. shoot.
iii. turn right 90 degrees.

End if
 End Loop

2

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 24 of 39 Based on the original work by Brian Ward

Ceebot Task 9.4: Power Up?
There are 6 WingedShooters ready to fly .. some of them have no power cells
while others need their power cells replacing. So there are two different situations

to deal with .. a suitable case for an statement.
Your task:
Use a for loop with an embedded if .. else .. statement .

A partial algorithm is shown here:

Your first step should be to complete this
algorithm:

Note which robots have no cells at
all and which need their cell
replacing.
Then work out what the condition
should be for the if statement (you
may need to use || operators)
work out the steps needed to
supply a new cell
work out the steps to replace a cell

Note: the power cells on the ground are all 3 metres apart

Ceebot Task 7.6: Calculator 2 (Extension)
Your task: Extend your code from last week so that the program validates what

The idea here is to stop the program from crashing (or an error) if a wrong type of data is
entered, and also offer the user a chance to re-enter a number.

Hint: write a do while loop, with an if statement inside that tests whether the input is a
number. Also pay attention to what strval() returns when trying to convert non-numerical
data to a numerical format

Test the program by trying to input a letter, or a word, or a symbol, and see whether your
validation code prevents the program from crashing.

3

Algorithm (part completed)
1. Loop 6 times

a. if (condition)
 ... supply a new cell

 else
 ... replace existing cell

 end if
 End Loop

4

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 25 of 39 Ceebot Directed Study

Ceebot Task 10.6: Invisible Enemy Attack 2
You have just arrived on a Spaceship and your WheeledShooter robot is keen to
get home to your village in the distance. This looks like a peaceful scene but your
robot senses danger and stops!

Your task 1:
Program your robot to move the 80 metre distance to the village.
Run the program and the danger should then become all too clear.

Your task 2:
Now your task is clear .. to reach home after getting rid of the sneaky enemy invaders
along the path. Fortunately they always appear in the same positions (see below)
You will need to turn() and fire() in a similar way to previous exercises but note that the
move() instruction has to finish before you can do anything else .. so what do you do?
One solution is to move your robot in smaller chunks .. for example 5 metres at a time .. if
you do this 16 times you will reach the home village (80 metres away) and you can turn
and fire if necessary (note: firing for 3 seconds is advisable to destroy some robots!)
So program a while loop that repeats 16 times
Inside the loop you can:

o move 5 metres
o use if statements to check your position and fire if necessary (see below)
o Note that some robots are to the left and some to the right!

Enemy Positions
The enemy robots appear at 15, 30, 35, 45, 55 and 65 m. along the path
These are positions 3, 6, 7, 9, 11 and 13 .. if moving 5 m. a time and using a loop counter

Ceebot Task 10.3: To Be or Not to Be?
This scene looks familiar , with 10 possible target positions, but each time you
reset the program the target positions will be different. We are going to tackle the

program differently by asking the user whether to fire or not.
Your task:
You are to destroy all the Targets while avoiding the engineers and their Titanium cubes.

The target positions are each 5 metres apart, so you must use a for loop to move
your robot forward 5 metres at a time.
After each move, you should use the instruction to ask :

"Destroy (y/n)?"
If the input answer is "y" the necessary instructions are performed to destroy the
target, otherwise it is left alone.

Note: targets should be destroyed for any of the following : "y" , "Y", "YES" or "yes"

Extra
1. You must output a message to the screen after each firing saying how many Targets have
been destroyed so far.
2. You must also output messages showing the result of each action:

e.g. either Target 3 Destroyed or Target 3 Avoided

6

5

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 26 of 39 Based on the original work by Brian Ward

Ceebot Task 9.7: Roll Call 1
You have 10 WingedShooter troops lined up in front of your robot, 5 metres apart
.. but some of them are sick. As your robot moves forward to take the roll-call,
they will either move onto their platform and report for duty or fly off to sick bay!

Note that the situation is different each time you reset the exercise!

Your task:
You are to count up how many of your troops are sick and how many are fit for duty.

Start by programming a loop where your robot just moves forward 5 metres at a time
along the row of troops.
You will see the troops coming forward or flying off, but how can you count them?

Program Guidance
You can use your radar() instruction to help you:

item = radar (WingedShooter, -90, 10);
it will send a narrow (10 degree) beam to the right of your robot (-90 degrees)

If you modify this :
item = radar (WingedShooter, -90, 10, 0, 6);

the beam will only detect between 0 and 6 metres away. This will detect troops that
moved forward to the platform, ignoring the ones that flew off!

, it returns a null value, so we can do either this:
if (item == null) // this robot flew off sick
{
}

or this:
if (item != null) // this robot reported for duty
{
}

Algorithm
You n

count up how many are sick and
how many have reported for duty.
Add 1 to appropriate counters
within the loop.
Use message() instructions to
show your counts at the end.

Here is a partial algorithm to help.

To finish the task
The is very weak.
There is a PowerStation nearby,
so add some more code at the
end of your program to do this :

o Use your radar to find the PowerStation
o Just go there and your robot will automatically start recharging

Extra
Notice that all the robots have names. Can you display the name of each fit robot in a
suitable way as you count them (n.b. item.name has this information after the radar is used)

Example message: Robot <Brian> Counted!

7

Algorithm (part solution)
1. Set counter to zero
2. Loop 10 times

 a. move forwards 5 metres.
 b. pause for 1 second
 c. use radar with limited range
 b. if NO WingedShooter detected

i. add 1 to counter
 end if

 End Loop
3. Display counter value

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 27 of 39 Ceebot Directed Study

Ceebot Task 5.5: Draw Using Variables
(a further modification)

You should already have a program that will draw rectangles of any size and length, inputting
the lengths required. But there is a problem .. what happens if the length and width are too
big? Try it .. the robot hits a barrier and blows up!

Your task
Modify your existing program

the user is asked what length and width they require for the rectangle
the program only draws a rectangle if the length and width are in the right range
(maximum 23 metres) and a message is displayed saying:
Rectangle of length metres and width metres completed.

If the value input is wrong a suitable message is displayed:
Length is too big

or Width is too big

Testing
Create a new test plan for your program and test it using the following inputs:

Length Width
30 30
20 20
30 20
20 30
23 24
24 23
24 24
23 23

Does the program always behave as you expected? This testing should reveal any problems
at the boundary value (23). You may have to adjust your program as a result of this testing.

You should put algorithm, code and completed test plan into your log book.
Add a comment about the testing that you did and any program changes needed.

Week 3: Independent Study (4 Tasks)
The following exercises will be marked. Attempt them outside
of class, and copy your code, as well as screenshots, and
algorithms into a logbook. In week 5 you will be required to
submit this logbook electronically.

8

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 28 of 39 Based on the original work by Brian Ward

Ceebot Task 9.6: Alien Destruction
In front of you is a row of TargetBots and AlienEggs. After a few moments, the
eggs will hatch into either AlienSpiders or AlienAnts and some of the ants can
be very aggressive!

Your task
Use your WheeledShooter robot to get rid of the aliens without destroying the Targets.

where the aliens will be.

Program Guidance
1. There are 20 objects altogether (TargetBots and eggs) so it is sensible to use a for

loop to repeat 20 times.
2. The objects are positioned 5 metres apart, so you should program your robot to move

this distance inside the loop.
3. You can use your radar to help you detect a TargetBot and then avoid all these

positions.
Hint:

In an earlier exercise of this unit (Roll-Call 1) you learned how to point your radar to

item = radar(TargetBot, -90, 5);
 will use a narrow (5 degree) radar beam pointing to the right.

Note that item will be null if nothing is detected.

Algorithm
One possible design for your program could be:

Code this algorithm and get it to work.

Extra
There is another problem .. your PowerCell may not always last to enable you to destroy all
the aliens.

but there is a PowerStation nearby which will recharge your cell if you just go there.
use your radar to get its position in the normal way.
you should regularly check your PowerCell energy (energyCell.energyLevel) .. if this
is below 0.3 you should go off and recharge it at the PowerStation.
How can you then return to your previous position?

Put your algorithms and code into your logbook.

9

Algorithm
1. Loop 20 times

a. use radar directed right to detect TargetBot
b. if TargetBot not detected

 i. turn right
 ii. fire

 iii. turn back
 end if

c. move 5 metres forward to next position
 end loop

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 29 of 39 Ceebot Directed Study

Ceebot Task 12.2: Testing 2
In the previous exercise (exercise 12.1 in last week exercise 5), power cells can
sometimes run down completely during a test. You need to stop this from
happening.

Your task:
Modify the previous program () so that it
stops when the energyLevel reaches a low level (0.2). It should also stop, as before,
when the required number of tests is done.
So you will need to put 2 conditions at the start of the while loop (see the note below)
At the end of the test loop, you should output 2 more messages:

o output how many tests were completed out of the number required
o output a message saying whether the powercell failed or passed the tests (it fails

if the number of tests completed is less than the number required to be done)

e.g.:
 OR

Note: You will need to use && or || logical operators (which??) to combine 2 conditions.

Ceebot Task 25.1 : Nascar 1
For this task you have to program a racing car to drive round an oval track marked
out with Barriers. Basically you need to prevent the car from hitting any barriers!

Some Hints
1. You need an infinite loop
2. Inside the loop, use the drive()

instruction with 2 variables for the bot speed
and bot direction
e.g drive(botspeed, botdirection);

3. Use a brief wait(0.01) after the drive()
instruction to allow some movement to take
place

4. A botspeed of 1 gives maximum speed, 0 minimum
5. A botdirection 0 is straight ahead, 1 is maximum left and -1 is maximum right
6. Use radar() to detect a Barrier and change the botdirection if necessary

e.g. item = radar(Barrier, -30, 30, 0, 20); // detects front right up to 20 metres away

Press the [F1] key to see more information and a possible algorithm
Note .. To start nascar programs you click a different button - bottom right.

) in your logbook.

If you have some success, you could try your code in the Nascar 2 and Nascar 3
exercises (Although this is optional
Hint: You may need to add code to avoid hitting other WheeledRacer robots!

11

10

3 tests completed out of 5
Power Cell Failed Test

4 tests completed out of 4
Power Cell Passed Test

